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Abstract. A simplified version of the model by Elser and Joseph for the process of growth of an entropically
stabilized, two-dimensional quasicrystal with no dynamics in the bulk, is proposed. The phason fluctuations
are modeled by a scalar field on a periodic lattice. The choice of the master equation for the growth is
restricted by the requirement that its detailed balance solution describes the equilibrium fluctuations of
the field with a quadratic Hamiltonian. The model is parametrized by the chemical potential bias δµ and
the microscopic surface tension coefficient σ. The phase diagram of the system on the plane (σ, δµ) shows
several distinct regimes of growth, separated by relatively narrow transition zones. Within the regions
corresponding to these regimes, the phason fluctuations do not depend on δµ and σ. Analytic expressions
for the spectra of phason fluctuations are obtained and confirmed by numerical simulation.

PACS. 61.44.Br Quasicrystals – 81.10.Aj Theory and models of crystal growth; physics of crystal growth,
crystal morphology and orientation

1 Introduction

Although the term “entropy stabilized quasicrystal” is
deeply embedded in the literature [1–3], the word “sta-
bilized” is used here somewhat loosely. Indeed, it is usu-
ally taken to mean that the entropy prevents quasicrystals
from transforming into other phases, just as it prevents a
liquid from crystallizing. This parallel fails to account for
the fact, that the excess of entropy in the models of “en-
tropy stabilized” (or random) quasicrystals is attributed
to the frozen degrees of freedom, the so-called phasons.
These degrees of freedom involve complex rearrangements
of many atoms, and their presence in dynamics would have
consequences, which have never been observed (e.g. un-
usually high diffusion rate [4]). Thus, the entropy related
with them does not affect the stability of quasicrystals at
any reasonable time scale. This brings up the question: to
which extent are the results obtained under the assump-
tion of equilibrium phason fluctuations applicable to the
real quasicrystals?

The structure of quasicrystals is formed at a thin in-
terface between liquid and solid phases. In the case of no
phason dynamics, the random phason fluctuations occur-
ring at the growth front stays frozen in the bulk. As a
result, as well as for the case of equilibrium phason fluc-
tuations, a given quasicrystal should be considered as a
representative of an ensemble. There is, however, an es-
sential difference between these ensembles. In the case of
equilibrium phason fluctuations, the weights of the indi-
vidual configurations are given by the Boltzmann formula,
while in the case of frozen phasons the weights depend on
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the details of the kinetics of growth and there is no uni-
versal formula for them. Thus the choice of the model of
growth plays an important role in the consideration of the
frozen phason fluctuations.

The problem of growth of random quasicrystals was
originally considered by Sekimoto [5,6]. The phason fluc-
tuations in the solid phase of the model [5] are frozen
everywhere except a surface layer of finite thickness. The
propagation of the growth front is driven by a controlled
temperature profile and is completely deterministic. One
of the flaws of this model is that the deterministic prop-
agation of the growth front does not respect the detailed
balance principle. As a result, the equilibrium in the solid
phase is not established even in the limit of zero growth
rate. In principle, one could approach the equilibrium by
increasing the thickness of the intermediate layer, where
the phason degrees of freedom already exist but are still
unfrozen. However, this contradicts the common belief
that the thickness of the interface between the solid and
the liquid phases does not exceed a few interatomic dis-
tances.

An alternative model of quasicrystal growth was pro-
posed by Elser and Joseph [7,8]. Contrary to the model by
Sekimoto, the model [7] is founded on the respect of the
principle of detailed balance. This principle guarantees es-
tablishing of the thermodynamic equilibrium in the limit
of zero growth rate. Thus, there is no need to introduce an
intermediate “unfrozen” layer – one can assume that the
phason coordinate is frozen everywhere in the solid phase,
and that in the liquid phase there is no order at all. These
features make the model aesthetically attractive. In this
article, we consider a simplified version of this model, with
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the particular emphasis on the non-equilibrium behavior
in the case of finite growth rate.

The growth of random quasicrystals is related to a
much wider class of problems dealing with the growth of
solid phases with frozen internal degrees of freedom. One
could mention here the chemical ordering in metallic alloys
or the lattice defects in the phases obtained by electrode-
position. Bearing this in mind, we have tried to keep the
reasoning as non-specific to quasicrystals as possible.

2 Lattice model

Before proceeding further, we will discuss the reasons for
the choice of the model for the simulation. First of all, this
model at equilibrium should reproduce the behavior of the
entropy density as a function of the macroscopic phason
gradient [9,10]:

S = Kαβij∂iφα∂jφβ , (1)

where φα are the components of the phason coordinate
and Kαβij are the so-called coefficients of phason elastic-
ity. On the other hand, the underlying statistical model
should be as trivial as possible, in order not to introduce
any unwanted features. From this point of view, “realis-
tic” models such as random tilings are too complex. In-
stead, we make no assumption about the atomic structure
of the quasicrystal and consider the phason coordinate as
a continuous field, which contributes to the free energy
through the term (1). We restrict our consideration to
the case of two spatial dimensions, and also replace the
multi-component field φα by a scalar. Finally, adding the
necessary discretization we obtain an unconstrained Gaus-
sian model on a two-dimensional lattice. We also impose
the requirement, that the growth interface should retain
its connectedness during the simulation. This condition is
most easily formulated on the hexagonal lattice, where the
continuity of the growth interface can be preserved by a
simple local algorithm. The algorithm is based on the re-
quirement, that those and only those hexagons, for which
the number of adjacent phase boundaries equals two, are
allowed to pass from one phase into another (see Fig. 1).
It is easy to verify, that any of these moves preserves the
number of connected components of the phase boundary.

The elementary states of the model are characterized
by defining the values φi on a subset of the facets of the
hexagonal lattice. This subset represents a solid quasicrys-
talline phase, and the values φi may be thought of as the
local phason coordinates. The elementary moves, taking
the system from one state to another consist in attaching
a hexagon to this subset or removing it, in such a way that
the connectedness of the growth boundary is preserved.
Note, that once a hexagon is attached, the correspond-
ing value φi rests unchanged until the hexagon is eventu-
ally removed. The probability of attaching a hexagon with
φ < φi < φ+ dφ in a unit time is given by the formula:

P+ = dφ exp

−∑
j

(φ− φj)2

2
− σ

2
δL

 . (2)
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Fig. 1. Allowed and forbidden moves for the lattice growth
model. One can remove the hexagon (a), but not the hexagons
(b) and (c). One can attach the hexagon (e), but not (d).

Here the sum is taken over the neighboring hexagons, and
δL stands for the change of length of the phase boundary
(δL may take values −4, −2, 0, 2 and 4). The probability
of removing a hexagon in a unit time does not depend on
the value of φi:

P− = c exp
(
−σ

2
δL
)
. (3)

The master equation with the probabilities (2) and (3) ad-
mits of a solution satisfying detailed balance. It is easy to
verify, that this solution is a Gibbs ensemble for a system
with the Hamiltonian

H =
∑
(i,j)

(φi − φj)2

2
+ σL+Nµ (4)

at temperature T = 1. The sum in (4) is taken over
the neighboring hexagons, L stands for the length of the
boundary between phases, N is the number of hexagons
in the “solid” phase and µ is the chemical potential of a
hexagon. Assuming uniform discretization of the values of
φ with the step δφ� 1, the chemical potential is given by

µ = log(c/δφ). (5)

The growth process is thus controlled by the parameters
c and σ of (2). The coefficient c determines which process
(growth or melting) prevails, while σ may be thought of
as a surface tension coefficient. The growth rate decreases
with increasing c up to the reversion point c0 = 1.1177...,
at which an equilibrium between two phases is established
(see Appendix A).

3 Phase diagram

In this section we consider the behavior of the system de-
scribed above at different values of the microscopic surface
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Fig. 2. Regimes of growth of the Gaussian model on the hexag-
onal lattice. In the region (a) a local thermodynamic equilib-
rium is established. The regions (b) and (c) both correspond
to the layer-by-layer growth. In the case (b) each new layer is
brought to equilibrium with the underlying phase, while in the
case (c) it is frozen in its initial configuration. The regime (d)
is characterized by massive formation of tears giving rise to a
dendritic growth pattern, and the region (e) corresponds to no
growth. The probability of formation of a tear is represented
by isolines (dashed lines). Shaded area correspond to transition
regions.

tension σ and the chemical potential bias δµ = log(c0/c).
First, we examine the boundary at the plane (σ, δµ), which
separates the growth and no growth conditions. Then we
discuss the formation of tears, and the role of the surface
tension σ. Finally, we consider three distinct regimes of
growth at high values of σ, which allow for analytic ex-
pressions for the correlation functions of φ.

As long as one can neglect the contribution of the sur-
face in the bulk free energy, growth is impossible if δµ < 0.
However, if σ drops below a certain limit (which corre-
sponds to zero macroscopic surface tension), the phase
boundary fluctuations diverge. The length of the bound-
ary becomes proportional to the volume of the system,
which gives rise to a finite contribution of the surface
to the bulk free energy. This contribution can compen-
sate for the negative chemical potential bias and gives
rise to dendritic growth even in the case δµ < 0. Nu-
merical simulation shows that this becomes possible for
σ < 0.77 ± 0.01, which corresponds to the point in
Figure 2 where the growth boundary bends downwards.
The typical fluctuations of the phase boundary near this
critical point are shown in Figure 3. In the limit of small σ,
the surface-to-volume ratio of dendrites tends to 4, which
determines the asymptotic slope of the growth boundary:

δµ ∼ 4σ + const.

It should be remembered, however, that this formula
makes sense only for positive σ, because the topological
constraint on the connectedness of the phase boundary
becomes unphysical if σ < 0.
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Fig. 3. Equilibrium at low surface tension (µ = µ0, σ = 0.8).
The values of φ are represented by the levels of gray.

Comparison of the statistics of the fluctuations of φ in
the non-equilibrium phase obtained by growth with equi-
librium fluctuations makes sense only if the growth results
in formation of a bulk solid phase. This is obviously not the
case for the regime of dendritic growth described above.
It should be emphasized however, that for the considered
model the bulk growth in the strict sense is impossible for
any values of σ and δµ. Indeed, as has been remarked in
[7], the presence of the internal degrees of freedom makes
the process of the formation of tears auto-catalytic. At any
finite growth rate there is a finite probability that a local
trough on the growth front will initiate a new tear. Nu-
merical simulations give an estimate of the probability of
formation of a tear per attached hexagon; the results are
displayed in Figure 2 by dashed lines. Clearly, increasing
the surface tension reduces the probability of the forma-
tion of tears. Thus, it makes sense to consider the asymp-
totic regimes of bulk growth in the limit σ → ∞. As we
shall see, there exist three distinct regimes of growth, cor-
responding to the regions (a), (b) and (c) in Figure 2.

At a high value of the surface tension σ, the phase
boundary remains as flat as possible most of the time and
the growth occurs through the propagation of kinks. The
simplest case to start with corresponds to the limit of
fast growth (δµ → ∞), when the kinks propagate with
no retreat. It can be shown (see Appendix C), that the
fluctuations of φ in this case are Gaussian. The spectrum
of fluctuations is given by the formula (21) and agrees well
with the results of numerical simulations (see Fig. 4). This
regime corresponds to the region (c) in Figure 2.

If one takes into account the processes of the removal
of hexagons, the ultimate value of φ on a hexagon in the
solid phase may be different from the value at the mo-
ment when this hexagon is first attached. For smaller val-
ues of δµ, as the growth slows down, a newly formed layer
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Fig. 4. 〈|φn(k)|2〉 versus k for fast growth. Results of the simu-
lation at δµ = 15.0, σ = 20.0 on the 64×65536 field are shown
by (�). The solid line represents the theoretical value (21).
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Fig. 5. 〈|φn(k)|2〉 versus k for growth with layer-by-layer an-
nealing. Results of the simulation at δµ = 1.5, σ = 10.0 on the
64× 8192 field are shown by (�). The solid line corresponds to
the theoretical value (15).

of hexagons may be reconstructed many times before be-
ing buried under a new one. These reconstructions clearly
modify the statistics of φ, bringing in the limit of slow
growth, the surface layer to thermodynamic equilibrium
with the underlying frozen phase. In other words, unlike
the case of fast growth, this regime is characterized by an
“annealing” of each new layer. Hence, the surface layer
plays a role similar to that of the unfrozen region in the
model by Sekimoto [5]. The statistics of φ in this regime
are Gaussian and do not depend on the growth rate as
long as the annealing of each layer is complete (see Ap-
pendix B). The spectrum of the fluctuations of φ is given
by the formula (16) which agrees well with the results of
numerical simulations (Fig. 5).

It is notable that both the regime of fast growth and
the growth with layer-by-layer annealing correspond to
wide ranges of values of σ and δµ (areas (a) and (b) in
Fig. 2), with a relatively narrow transition region. To un-
derstand this fact, let us consider in detail the transition
between the two regimes. The annealing of the surface

layer in the case of interest occurs mostly through the
mechanism of removing of single hexagons from the sur-
face and filling the resulting “advacancies”. Denote by x
the average number of times a given hexagon on the sur-
face layer is removed and attached before the layer is cov-
ered by a new one. The annealing is efficient if x � 1,
while the case of x� 1 corresponds to the regime of fast
growth. The value of x may be obtained from the master
equation on the propagation of the kink. Let nm stand for
the probability that the snapshot of the growth front has
a kink and an anti-kink separated by m > 0 hexagons. We
extend this notation by including the probability n0 to find
a flat surface and the probability n−1 for the configura-
tion with one advacancy. In the case under consideration,
when σ � 1 and δµ� 1, one could neglect the terms with
φi in the equation (2) and consider the growth as if there
were no internal degrees of freedom related with the field
φ. The master equation for the probabilities ni in this case
looks like

ṅi = ni−1Pi−1→i + ni+1Pi+1→i − ni(Pi→i−1 + Pi→i+1)
(6)

where the transition rates for i > 0 are given by

Pi→i+1 = c1

Pi+1→i = c2e−δµ,

and for i = 0 and −1 by

P0→1 = c1e−σ

P1→0 = c2eσ−δµ

P0→−1 = c2e−σ−δµ

P−1→0 = c1eσ.

Here c1 and c2 are constants of the order of unity. All
stationary solutions of the equation (6) may be obtained
as linear combinations of two independent ones. One is
the solution of detailed balance, when ni+1Pi+1→i =
niPi→i+1. The other solution, which is the one we are
looking for, corresponds to stationary growth. In this case
ni = n = const. for all i > 0, giving the net flux

Φ = niPi→i+1 − ni+1Pi+1→i = n(c1 − c2e−δµ).

The parameter x is then given by the ratio of the rate
of creation of advacancies n0P0→−1 and the net flux Φ.
Getting the value of n0 from the condition of stationarity,
obtain:

x =
eσ + ξ − 1
ξ2 − ξ ,

where ξ = (c1/c2)eδµ. Taking into account that δµ � 1
and σ � 1, the above can be rewritten as

log x ≈ σ − 2δµ+ const.

This formula describes the transition between the regime
of fast growth (x� 1) and the growth with layer-by-layer
annealing (x � 1). On the plane (σ, δµ) the transition
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Fig. 6. 〈|φn(k)|2〉 versus k for the regime of slow growth. Re-
sults of the simulation at δµ = 0.01, σ = 1.0 on the 64× 2048
field are shown by (�). The solid line represents the the spec-
trum at equilibrium (12).

region is a band of width of the order of unity having the
slope δµ ∼ σ/2 (see Fig. 2).

The growth in the region (b) in Figure 2 is charac-
terized by the alternation of two steps; fast propagation
of a kink and relatively slow annealing of the new sur-
face layer by advacancies. As the chemical potential bias
δµ decreases, the propagation of the kink becomes slower
and may even be reverted. As a result, the annealing zone
spans more than just one layer, which changes the statis-
tics of the field φ in the solid phase. In the limit δµ = 0
the fluctuations of φ obey Boltzmann’s law, giving rise to
the power spectrum (10).

Small, but non-zero values of δµ correspond to the
transition between regime (b) of Figure 2 and thermo-
dynamic equilibrium at δµ = 0. The deviation from equi-
librium in this case becomes important on the large scale,
as can be seen from Figure 6. The width of the transition
region can be estimated using the arguments by Elser and
Joseph. According to these arguments, a non-equilibrium
phase can be created by a growth process only if the chem-
ical potential bias between the “liquid” and “solid” phases
is bigger than the excess of the free energy density in the
non-equilibrium phase. This excess for the phase (b) of
Figure 2 can be calculated (see Appendix B) and is equal
to about δµb = 0.0744... per hexagon. This value gives
the estimate of the width of the transition region (a) in
Figure 2.

4 Discussion

The distinctive property of the considered growth model
is the negligible mobility of structure in the bulk. By itself,
this feature is common for the growth of solids from a liq-
uid or gaseous phase. The peculiarity of quasicrystals lies
in the presence of a non-trivial frozen order parameter (the
phason coordinate). Fluctuations of this parameter inter-
fere with the growth process on all scales. Thermodynamic
equilibrium of the degree of freedom related with the order

parameter can be established only through the retreats of
the growth front. Furthermore, this equilibrium is estab-
lished only locally, in the regions of the size of the typical
depth of the retreat of the growth front. It is instructive
to compare this situation with the growth of simple crys-
tals, where there is no such parameter. In this case, the
local thermodynamic equilibrium established on the scale
of few lattice periods entails the equilibrium on all scales
(with the exception of defects like dislocations and grain
boundaries). This explains why even at a high growth rate
crystals can be obtained in state close to equilibrium.

Besides quasicrystals, there exist other solid phases
with non-trivial frozen order. Consider, for example, or-
dered binary alloys in the case when the chemical order
persists up to the melting temperature. The defects of the
ordering (the anti-phase domain boundaries) are topolog-
ically stable, and can be removed only through a slow
diffusion process [11]. One would expect that retreats of
the growth front would constitute a more efficient anneal-
ing mechanism than the diffusion in the bulk solid phase.
This would manifest itself in unusually large antiphase do-
mains obtained for very slow growth rates, in comparison
to what might be expected taking into account only bulk
annealing at the melting temperature.

Another example of non-trivial frozen order is growth
with phase separation. In this case, however, the order-
ing process is limited by the diffusion of corresponding
atomic species in the fluid phase. This limitation is im-
portant for eutectic crystallization, but it is unlikely to
play any role for the vapor deposition. The latter prob-
lem has recently attracted considerable interest [12–16].
Also, one may mention simultaneous electrodeposition of
several different atomic species [17].

The mechanism of annealing by fluctuations of the
growth front may play an important role even in the
growth of simple crystals. Indeed, it is common knowl-
edge that lattice defects like dislocations should not exist
in thermodynamic equilibrium. Hence, by virtue of the
arguments by Elser and Joseph, the formation of disloca-
tions should be suppressed at very slow growth rate, even
when their low mobility rules out the normal annealing
mechanism. It is worth noting here, that a similar effect
might be obtained by applying artificial oscillation to the
chemical potential bias δµ. This is a common practice in
electrochemistry, where an alternating voltage bias is ap-
plied to improve the quality of the deposited material [18].

5 Summary

In this paper we have considered the regimes of growth of
random quasicrystals using the simplified lattice model. In
the limit of high surface tension, there exist three distinct
regimes – fast growth, growth with layer-by-layer anneal-
ing and a regime whereby the local thermodynamic equi-
librium is established. In all three regimes the statistics
of the phason fluctuations in the solid phase is calculated.
The growth regimes are universal and can be found in
other systems with frozen order (or disorder).
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6 Appendix A

The partition sum for N hexagons in the “solid” phase at
a unit temperature is equal to

Z = (δφ)−N
∫

e−H[φ]
N∏
i=1

dφi,

where H[φ] is given by (4). At the thermodynamic equi-
librium, the bulk free energy of the “solid” phase must be
equal to zero, which gives

− log(δφ) + lim
N→∞

1
N

log

(∫
e−U[φ]

N∏
i=1

dφi

)
− µ = 0,

where
U [φ] =

∑
〈i,j〉

(φi − φj)2/2.

The sum here is taken over the pairs of neighboring sites
〈i, j〉. Taking into account the equation (5), the growth
reversal point c0 is given by

log c0 = lim
N→∞

1
N

log

(∫
e−U[φ]

N∏
i=1

dφi

)
. (7)

This integral can be conveniently expressed in Fourier rep-
resentation. To introduce this representation we map the
hexagons on the nodes of the square lattice. The neighbors
of the node (n1, n2) are the nodes (n1−1, n2), (n1 +1, n2),
(n1, n2−1), (n1, n2+1), (n1−1, n2−1) and (n1+1, n2+1).
Let φn1,n2 denote the value of the field φ on the hexagon
corresponding to the node (n1, n2). Consider the basis of
Fourier coefficients of φ:

φ(k1, k2) =
∑
n1,n2

φn1,n2 exp (−i(k1n1 + k2n2)) . (8)

The value of U [φ] is given by the following integral over
the Brillouin zone:

U [φ] =

2π∫
0

2π∫
0

|φ(k1, k2)|2

× (3− cos(k1)− cos(k2)− cos(k1 − k2))dk1dk2. (9)

Hence, the integral in (7) is given by

log c0 =
1

8π2

2π∫
0

2π∫
0

dk1dk2

× log
(

π

3− cos(k1)− cos(k2)− cos(k1 − k2)

)
,

which gives
c0 = 1.11770...

The spectrum of fluctuations of φ stems from the for-
mula (9):〈
|φk1,k2 |2

〉
=

1
2 (3− cos(k1)− cos(k2)− cos(k1 − k2))

· (10)

It is also convenient to introduce the partial Fourier trans-
form:

φn2(k1) =
∑
n1

φn1,n2 exp (−i(k1n1)) . (11)

The spectrum of fluctuations of φn2(k1) resulting
from (10):〈
|φn2(k1)|2

〉
=

1
2
√

(cos(k1)− 1)(cos(k1)− 7)
· (12)

7 Appendix B

In this section we consider the statistical properties of the
phase corresponding to the region (b) in Figure 2. Dur-
ing the growth of this phase, each layer remains on the
surface for enough time to be annealed by the mechanism
of advacancies. Suppose, that for the mapping introduced
in Appendix A, the hexagon corresponding to the node
(n,m) lies in the mth layer. The distribution of the values
φn,m+1 is determined by the values φn,m on the under-
lying layer. In the same time, both distributions should
be identical in the limit of stationary growth. As we shall
see, these conditions define completely the statistics of the
fluctuations of φ.

The evolution of the distribution function of φn,m
in a layer is conveniently described in terms of the
partial Fourier basis (11) Assuming the expression
(4) for the Hamiltonian, the harmonics φm(k) with
different k are not correlated. For a given value
of φm(k), the distribution function of φm+1(k) is a
Gaussian bell. It may be written in the following generic
form:

P (φm+1(k)) =√
µk
π

exp
(
−µk(φm+1(k)− λkφm(k))2

)
. (13)

The value of λkis determined by minimizing of the poten-
tial energy of the new layer:

λk =
1 + eik

2(2− cos(k))
, (14)
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and the value of µk could be obtained through considera-
tion of the case when φm(k) = 0 for all k:

µk = 1− cos(k)/2.

Equation (13) governs the evolution of the distribution
function P (φm(k)) when passing from one layer to an-
other. The stationary point of this evolution is a Gaussian
distribution with the variance

〈
|φm(k)|2

〉
=

2− cos(k)
2 cos2(k)− 9 cos(k) + 7

· (15)

The correlation function 〈φm(k)φm+l(k)〉 is determined by
the equation (13):

〈φm(k)φm+l(k)〉 = const.× e−|lλk|.

This expression, together with formula (15), gives the
spectrum of fluctuations of φ:

〈
|φ(k1, k2)|2

〉
= (2− cos(k1))

(
2 cos2(k1)− 7 cos(k1)

+ 9− 4(cos(k1/2))(2− cos(k1))(cos(k2 − k1/2))
)−1

.

(16)

The fluctuations of φ in the phase (b) in Figure 2
are Gaussian and translationally invariant. Hence, formula
(16) describes completely the statistics of the field φ in this
phase. This enables one to compute the non-equilibrium
free energy density

f = lim
N→∞

U − TS
N

·

Here the internal energyU is given by (9), the temperature
T is equal to 1, N is the number of hexagons in the “solid”
phase and the entropy S is defined as

S = −
∑
{φ}

P ({φ}) logP ({φ}),

where P ({φ}) is the probability of a given configuration
of the field φ. Straightforward calculations lead to the fol-
lowing expression for the excess of the free energy density
with respect to its value in the equilibrium phase f0:

f − f0 =
1

8π2

×
2π∫
0

2π∫
0

(
r(k1, k2)− log (r(k1, k2))− 1

)
dk1dk2, (17)

where r(k1, k2) is the ratio of the average intensities of the
corresponding Fourier coefficients of φ in both phases:

r(k1, k2) =

〈
|φ(k1, k2)|2

〉
b

〈|φ(k1, k2)|2〉a

(here
〈
|φ(k1, k2)|2

〉
b

is given by (16) and
〈
|φ(k1, k2)|2

〉
a

–
by (10)). Numerical integration gives

f − f0 = 0.0744...

8 Appendix C

The mechanism of growth, corresponding to the region
(c) in Figure 2 is based on the propagation of kinks. The
probability of retreat of a kink is negligible, and the newly
formed layer is immediately covered by a new one. Hence,
in most cases an attached hexagon has three neighbors.
The distribution of the values of φ on the newly attached
hexagon is completely determined by the average value of
φ on its neighbors φ0:

P (φn1,n2) =

√
3

2π
exp

(
−3

2
(φn1,n2 − φ0)2

)
, (18)

where φ0 for the kinks propagating from left to right is
given by

φ0 =
φn1−1,n2 + φn1−1,n2−1 + φn1,n2−1

3
(19)

and for the kinks propagating from right to left by

φ0 =
φn1−1,n2−1 + φn1,n2−1 + φn1+1,n2

3
· (20)

Due to the translational invariance, the evolution of the
coefficients of the partial Fourier transform (11) in both
cases is given by the formula (13). Minimizing the energy
of the newly attached hexagon gives rise to the following
equation on the parameter λk in (13):

λk =
1 + e−ik + λke±ik

3
,

where the sign depend on the direction of motion of the
kink. The value of the parameter µk in (13) could be ob-
tained through the consideration of the case when the
values of φ on the previous layer are all equal to zero.
Assuming zero values for φn1−1,n2−1 and φn1,n2−1 in (20)
and (19), obtain

µk =
3− 2 cos(k)

10/3− 2 cos(k)
·

The power spectrum of the fluctuation of φ in each layer is
given by the stationary solution of the equation (13) with
the above values of λk and µk:

〈
|φn(k)|2

〉
=

3
8(1− cos(k))

· (21)
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